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Abstract

My thesis is focused on part of game the-
ory called the zero-sum games, especially
on the Double Oracle algorithm developed
for these games. The Double Oracle al-
gorithm tackles the problem of finding a
Nash equilibrium in large zero-sum games
of two players. This algorithm capitalizes
on oracles producing a best response for
each player. It is frequently used with
suboptimal oracles and in my thesis I ana-
lyze the impact of the suboptimal oracles
on the result of this algorithm. I imple-
mented this algorithm on a zero-sum game
of two players and furthermore I present
theorems, proofs and carried out experi-
ments.

Keywords: Game theory, Nash
equilibrium, Double Oracle algorithm,
Linear programming, Zero-sum games

Supervisor:
Ph.D

Ing. Rostislav Hor¢ik,

vi

Abstrakt

M4 bakalarska prace je soustfedéna na
specifickou sekci teorie her zvanou hry s
nulovym souctem. Zaméruji se na Double
Oracle algoritmus vyvinuty pro hleddni
Nashova ekvilibria ve hrach s nulovym
souctem, kde jeden nebo oba hraci maji
velky pocCet moznych akci. Tento algorit-
mus vyuziva moznost ziskat nejlepsi moz-
nou odpovéd pro kazdého hrace ale je
casto pouzivan s dobrou, ale né tou nej-
lepsi odpovedi. V této praci analyzuji di-
sledek takového pouziti Double Oracle al-
goritmu. Algoritmus jsem naimplemento-
val na hfe dvou hra¢a s nulovym souctem
a prezentuji véty, dukazy a experimenty
popisujici chovani algoritmu za dané situ-
ace.

Klicova slova: Teorie her, Linearni
programovani, Hry s nulovym souctem,
Double Oracle algoritmus, Nashovo
ekvilibrium

Preklad nazvu:
Oracle algoritmu

Konvergence Double
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Chapter 1

Introduction

Game theory is a mathematical discipline focusing on interaction of rational
agents in a set environment. I focus on a part of game theory describing
agents competing against each other. These types of games where two agents
compete against one another are called zero-sum games in a normal-form. In
such games, there always exists a strategy profile ensuring that each player
has the best possible strategy against strategies of other players. Such a
strategy profile is called Nash equilibrium of a game. For the zero-sum games,
there is a method, described later in the thesis, that is able to find the Nash
equilibrium given that a game matrix is provided. However, if this matrix is
simply too large, or if one or more players have a finite but vast amount of
possible strategies, then this method fails to compute the Nash-equilibrium
due to a long computing time or a lack of memory required for representing
pure strategies. In this thesis, I am studying the behaviour of the Double
Oracle algorithm, which was invented for tackling this problem. It is an
algorithm that ensures reaching previously mentioned Nash equilibrium of
the zero-sum games with two agents provided that we have two oracles that
produce the best response for each agent given the current strategy of an
opponent. This algorithm is frequently used in an environment, in which the
oracles can only approximate the best responses. My goal is to implement
this algorithm on the domain from |1] and analyze how it behaves with a
suboptimal oracle. I implemented both the Double Oracle algorithm and
Single Oracle algorithm, which is very similar and described later in this
thesis. I implemented both algorithms with oracles producing best responses
and then I altered these oracles to produce suboptimal responses. I also
analyzed theoretically impact of having suboptimal responses and then I
compared them to the results obtained from the experiments. To study these
results, we have to build up necessary theory and terminology and that is
the main goal of next part in this thesis.
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Chapter 2

Game theory

In this chapter, I present a part of the game theory with definitions and
theorems needed for this thesis. All definitions and theorems from Sections
2.4 were taken from [2].

. 2.1 Introduction

Game theory is a study of mathematical models of strategic interaction among
rational decision-makers, called players or agents. As mentioned before, my
setup and implementation of the algorithm takes place in a deterministic
environment with noncooperative agents, so further in this chapter 1 will
define needed terminology along with required theorems.

B 22 Utility theory

Definition 2.1. Agent: An individual, which is involved in a game and
chooses strategies to play is an agent.

Agents in an environment are choosing strategies based on their preferences
of states of the world. They are so-called self-interested agents.
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2. Game theory

Prior to developing the theory we have to define a way to interpret the agent’s
interests and preferences regarding states of the world he lives in. One of
the most used approaches to do so, is called the utility theory. This theory
represents an agent’s interests in states of the world with a function mapping
states of the world to real numbers.

Since in this thesis we will be operating in a deterministic environment
I identify an action of a player with the outcome of this action. Let &
denote the set of actions available to an agent. Suppose that the agent has a
preference relation over the actions a1, a0 € &7 as follows:

B a > as - Agent weakly prefers a; to as
B a; > as - Agent strictly prefers a; to ao

B a; ~ as - Agent does not have a preference between a; and as

The term lottery also needs to be defined as a probability distribution over
actions [ = [py : a1, ..., pg : ak|, where a; € &7 and each p; > 0 and Zle p; = 1.
Let p;(a;) denote the probability of choosing the action a; in the lottery [
and let .Z be the set of all lotteries. Suppose that the agent has the same
preference relation over the lotteries as over the actions.

Utility function associates each action of a player with a real number. This
utility function exists, if the above-mentioned preference relation satisfies the
following axioms:

® Completness: Vai,as, a; > as or as > aj or aj ~ as.
B Transitivity: If a; = as and as > a3, then a1 = ag

® Substitutability: If a; ~ a2, then for all sequences of one or more
outcomes as,...,a; and sets of probabilities p, p3, ..., pr for which p +

S api=1,[p:ai,ps:as,....pr:ag] ~ [p:as,ps:as,...,pg: ag)-
® Decomposability: If Va; € o7, p;, (a;) = pi,(a;) then I ~ Io

® Monotonicity: If a; > az and p > g then [p : a;,1 —p : as] > [¢:
ay,l —q: as

® Continuity: If a; > a2 and ag > as, then Ip € [0, 1] such that ay ~ [p:
ai,1 —p:as.

After defining these axioms we can establish the theorem that describes that
if a preference fulfills these axioms, there exists a utility function describing
these preferences.



2.3. Games in normal form

Theorem 2.2. (von Neumann and Morgenstern, 1944) If a preference
relation > satisfies the axioms completeness, transitivity, substitutability,
decomposability, monotonicity, and continuity, then there exists a function
u: % — [0,1] with the properties that:

B u(ay) > ulag) < a1 = as

B u([pr:ar,...,pr:ag]) = Zfﬂpz’u(ai)

Furthermore, von Neumann and Morgenstern also showed in [3] that every
positive affine transformation of a utility function is also a utility function
satisfying the same preferences, in other words, the absolute magnitude of
this function does not matter.

. 2.3 Games in normal form

In the last section, we have formed a utility theory, that allows using utility
function for representing an agent’s preferences. As we would expect, a
reasonable agent will want to reach the best possible outcome or state of the
world and if we take into consideration the utility function, then it comes to
maximizing this function by choosing the best possible action. Now, if we
consider more than one player each with his own utility function, then it is
clear, that actions of one player have an impact on the other players along
with their utility functions. Generally, these agents are trying to maximize
their utility functions and it does not have to be the case of competing against
one another.

The normal, or strategic, form of a game is the most used representation of
a strategic interaction in the game theory. This representation of a game
assumes that the state of the world only depends on players’ actions. This is
a very limiting assumption, but many other forms of games can be reduced
to the normal-form game.

Definition 2.3. Normal-form game: A (finite, n-person) normal-form
game is a tuple (N, A, u), where:

® N is a finite set of n players (agents)

B A=A x---x A,, where A; is a finite set of actions available to player
i. Each vector a = (aq,...,a,) is called an action profile.

® y=(up,...,u,) where u; : A+ R is the utility function for a player i.

7



2. Game theory

The usual way of representing normal-form games is through an n-dimensional

matrix, where every item in the matrix is a list of agents’ payoffs correspond-
ing to agents’ actions that lead to this item in the matrix. This representation
is very important in the zero-sum games of two players, which we will discuss
further in this thesis.
We also have to define strategies in the normal-form games. We have defined
the actions available to each player and strategies are choices over these
actions. The first strategy that comes to mind is choosing an action and
playing it, this is called a pure-strategy, and if every agent follows this, then
we obtain a pure-strategy profile. But another option occurs and that is
randomizing over the set of actions available to a player following a probability
distribution, called a mixed strategy.

Definition 2.4. Mixed strategy: Let (N, A, u) be a normal-form game, and
for any set X let II(X) be the set of all probability distribution over X. Then
the set of mixed strategies for player ¢ is S; = II(4;).

Further on, if not specified, a strategy will always carry a meaning of the
mixed strategy.
For any mixed strategy s; € S; of player i, let s;(a;) denote probability of
choosing the action a; in the mixed strategy s;.
Definition 2.5. Support: The support of a mixed strategy s; for a player @
is the set of actions {a;|s;(a;) > 0}.

Definition 2.6. Mixed-strategy profile: The set of mixed-strategy profiles
is the Cartesian product of the individual mixed-strategy sets, S1 x - -- x .Sy,.

B 24 Best response and Nash equilibrium

First, we define the best response of an agent to a given opponent’s strategy.
Prior to that let s—; = (s1,...,8i-1, Si+1,---,5n)- It is a strategy profile s
without the strategy of the agent i. Now we can define the best response of
an agent ¢ to s_;.

Definition 2.7. Best response: The player i’s best response to the strategy
profile s_; is a mixed strategy s € S; such that w;(s}, s—;) > u;(s;,s—;) for
all strategies s; € .S;.

We also have to define e-best response for later use in this thesis.

Definition 2.8. e-best response: Let ¢ > 0. The player i’s e-best response
to the strategy profile s_; is a mixed strategy s; € S; such that u;(s;,s—;) >
u;(si, s—;) — € for all strategies s; € S;.

8



2.5. Zero-sum games

Now that we have defined the best response of an agent, we can move
forward to defining the main term in this thesis, the Nash equilibrium. Nash
equilibrium is a concept of a solution for a particular game in a sense, that in
Nash equilibrium, no player would change their strategy even if they knew
strategies of other players.

Definition 2.9. Nash equilibrium: A strategy profile s = (s1,...,,) is a
Nash equilibrium if, for all agents i, s; is a best response to s_;.

We also have to define following term of e-Nash equilibrium, because it is
used later on in thesis for proving convergence of the investigated algorithms.

Definition 2.10. e-Nash equilibrium: Let ¢ > 0. A strategy profile
s = (s1,...,8,) is a e-Nash equilibrium if, for all agents i, s; is a e-best
response to s_;.

B 25 Zero-sum games

Zero-sum games, also called constant-sum games, are a special class of the
normal-form games, that we define for two players playing against each other.

Definition 2.11. Constant-sum game: A two-player normal-form game is
constant-sum if there exists a constant ¢ such that for each action profile
a € A; x Ay it is the case that ui(a) + u2(a) = c.

Thanks to the previously mentioned fact, that any positive affine transfor-
mation will not alter preferences, we can assume without loss of generality
that ¢ = 0 in every case and we obtain the term zero-sum game.

Zero-sum games are games of pure competition between two players, because
increasing one player’s utility function necessarily decreases other player’s
utility function and therefore they are competing against each other.

For representing a zero-sum game we can construct a 2-dimensional matrix
M in the following fashion. Let the first agent with the set of actions Ay be
the row player and second agent with the set of actions As be the column
player. Every row of matrix M corresponds to one certain action from A;
of the first agent and every column of M corresponds to an action from Ao
of the second agent. The number in matrix M on position ¢, j corresponds
to a first agent’s payoff (utility function u;) corresponding to action ¢ for
the first agent and action j for the second agent, and therefore loss for the
second agent. Let p be a mixed strategy for the row player and ¢ be a mixed
strategy for the column player. Value of the game under these strategies is:

V(p.q) = p" Mgq

9



2. Game theory

We will make use of this representation later for constructing a linear program
solving a zero-sum game.

B 26 Finding Nash equilibrium of zero-sum games

Throughout my thesis I was confronted with solving zero-sum games efficiently
as a part of the implemented algorithm and in this section, I will describe
how to tackle this issue with linear programming. A derived linear program
for this purpose was taken from [4].

In this section I refer to Section 2.5/ for definition of matrix M € R™*™ as
game matrix of zero-sum game. Before continuing, I will establish the notion
of worst-case optimal mixed strategy for both row and column player.
Let there be functions:

B(x) = m}én xI My, aly) = max x My

Now we can establish, that x* is worst-case optimal, if 5(x*) = maxx 3(x)
and symmetrically that y* is worst-case optimal, if a(y*) = miny a(y).
Firstly, we need to establish, that there exists a Nash equilibrium to be
found and computed. I was in luck with my setup, because thanks to next
theorem from [4] we can see that every zero-sum game has at least one Nash
equilibrium:

Theorem 2.12. (Minimax theorem for zero-sum games) For every zero-
sum game, worst-case optimal mixed strategies for both players exist and can
be efficiently computed by linear programming. If X* is a worst- case optimal
mixed strategy of row player and y* is a worst-case optimal mixed strategy of
the column player, then (x*,y*) is a mixed Nash equilibrium, and the number
B(x*) = mazxmingx” - M -y = x*T . M - y* = mingmazxx” - M -y = a(y*)
is the same for all possible worst-case optimal mixed strategies x* and y*.

Proof of this theorem is presented in [4]. It is based on the duality in linear
programming.
We will recall here the construction of linear programs from the proof allowing
to compute the Nash equilibrium.

We have to start looking at it from perspective of column player trying to
minimaze first player’s payoff given he knows his strategy x. According to
these settings, variables are y = (y1,...,¥,) and x = (x1,...,Z;,) are known
numbers:

10



2.6. Finding Nash equilibrium of zero-sum games

Minimize x* M y
n
subject to Zyj =1y>0

j=1

Now taking the dual of this linear program results in:

Maximize xq

subject to MTx — 1z >0

Where only z¢ is a variable. Now we construct the same linear program
with two more constrains and the most important change, that x1, ..., z, are
regarded as variables.

Maximize xg

subject to MTx —1zg >0

m
Zmi =1,x>0
i=1

By solving this linear program we obtain the optimal solution (xg,x*).

We can derive the linear program for obtaining the optimal probability
distribution of the column player in a similar way. And since both x* and y*
are worst-case optimal, this set of strategies is a Nash equilibrium.

11
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Chapter 3

Double Oracle and Single Oracle
algorithms

B 3.1 Problem solved by these algorithms

Further described algorithms were developed to tackle the problem of large
zero-sum games, where one or more players have a vast amount of strategies
to choose from and therefore the usual method of finding Nash equilibrium
with linear programming fails due to long computing time. The Double Oracle
algorithm capitalizes on the existence of two oracles, each one providing the
best response for one agent given a strategy of the other agent. This allows
reducing computing time significantly for reaching the Nash equilibrium,
provided that support of mixed strategies in Nash equilibrium is significantly
smaller than number of actions for each player. The Single Oracle algorithm
is a version of the Double Oracle algorithm, where one of the oracles is not
needed. It is also important to note, that in this section and further on,
the values in game matrix, denoted M, carry meaning of cost to the row
player as opposed to the payoff for row player as presented in Section [2.5]
this context was introduced in [1] and I keep rest of my thesis consistent with
it. I would also like to mention that since the value of the game under the
strategies p and ¢ is V(p,q) = p’ Mg, it now carries meaning of a cost to
the row player so he wants to minimaze this value and the column player
wants to maximize this value. The value of the game in Nash equilibrium is
Ve = min, max, V(p, ¢) = max, min, V(p, q).

13



3. Double Oracle and Single Oracle algorithms

B 32 Single Oracle algorithm

B 3.2.1 Steps of the algorithm

This is a version of the Double Oracle algorithm, where one of the players
has a reasonably small set of pure strategies and therefore there is no need
for an oracle to produce the best responses for this player. This algorithm
was also implemented with a lower number of possible camera positions as
compared to the implementation of Double Oracle algorithm.

Let column player have a set of actions ¥ and let %; be the set of found
actions for row player on the iteration i. Let gy be the initial arbitrary
probability distribution over ¢ (for example the uniform distribution).

The algorithm performs these steps on every iteration i:

1. Use the row oracle to find best pure strategy R(g;) = r; as a response to
q;- If r; € %Z;, terminate the algorithm, otherwise add r; to %;.

2. Solve the game with linear program as described in Section to obtain
optimal strategies (p;, ¢;) for row and column player.

This is the algorithm as described in . In the next chapter, I will present
my proposal to alter terminating condition of this algorithm and show a proof
of it converging to e-Nash equilibrium.

B 3.2.2 Modified Single Oracle algorithm

The modification consists mainly in a different condition of terminating the
algorithm. Let % be the action set of column player and Z; be the action set
for the row player on the iteration ¢. Initialize the algorithm with an arbitrary
pure strategy 7o, so Zo = {ro}. On the iteration i, algorithm performs these
following steps:

1. Solve the curent game with matrix M and sets %;,%. That gives us
Nash equilibrium (p;, ¢;) of restricted game to %;. Let u; = p;fFM qi.

14



3.2. Single Oracle algorithm

This value u; is upper bound on Vg, because %; C %, where & are all
pure stragies for the row player.

2. Produce best response R(q;) = r; for g;. Note that this is a lower bound
on Vg, because

l; = V(rs,¢;) = min p” Mq; < maxminp? Mq = Vg
P a P

3. If u; — I; < e, finish the algorithm, otherwise add r; to %;.

Now it remains to prove, that this algorithm converges to e-Nash equilibrium.

Theorem 3.1. Let € > 0. The pair of strategies (p;, q;) obtained by the
modified Single Oracle algorithm forms an e-Nash equilibrium.

Proof. First, ¢; is a best response to p;, because (p;, ¢;) forms a Nash equi-
librium of a restricted game over %Z;, €. As for p;, we know from terminating
condition that u; — I; <€, so u; — Vg < € must also be true, since [; is a lower
bound to V. From that follows

u; = p] Mg; < Vo +e=minV(p,q;) +e

Next, I want to present a proof of convergence for a suboptimal oracle. Let
the row oracle produce a suboptimal response r; to ¢;:

HEHV(]L QZ) > V(T’L’Q’L) - 57 >0

Theorem 3.2. Let € > 0, 6 > 0. The pair of strategies obtained by the
modified Single Oracle algorithm forms an (§ + €)-Nash equilibrium.

Proof. The strategy ¢; is the best response to p;, since p;, ¢; form a Nash
equilibrium of a game restricted to sets of strategies %;, €. It follows from
terminating condition that u; — ; < €, so

w, < Vog+d+e
PIMg =u; <Vg+d+e
From last statement it is clear, that p; is a (§ + €)-best response. ]

15



3. Double Oracle and Single Oracle algorithms

B 3.3 Double Oracle algorithm

B 3.3.1 Steps of the algorithm

The Double Oracle algorithm is an iterative algorithm, which performs three
steps in each iteration. As I mentioned earlier, it is used for zero-sum games,
where one or more agents have too many strategies, so on each iteration the
current game matrix is updated with the pure strategies produced by the
oracles. Let R be the oracle for row player and C be the oracle for the column
player.

On the iteration i, we have a set of found pure strategies for both players, %;
for the row player, and %; for the column player. The current game matrix
consists of rows associated with %; and columns associated with ;. We start
the algorithm with an arbitrary row and column and then on each iteration ¢
we perform these three steps:

1. Solving the current game (computing Nash equilibrium) with strategies
restricted to the %; for the row player and to %; for the the column
player. In this step we obtain a mixed strategy for the row player p; and
mixed strategy for the column player g;.

2. The row player reacts to mixed strategy ¢; : R(q;) = r;, finds an optimal
pure strategy r; and we add it to %;.

3. The column player reacts to mixed strategy p; : C(p;) = ¢;, finds the
optimal pure strategy ¢; and we add it to %;.

The algorithm is terminated, when on iteration ¢, both produced best
reponses 1; and ¢; are already present in the current set of found strategies
Z; and €;. In practise it is sometimes better to terminate in case that
V(pi,ci) — V(ri,qi) < €, where € is a parameter. This alternative terminating
condition is investigated later in this thesis.

B 3.3.2 Convergence and correctness proof

Let ¢; be a probability distribution over strategies of column player on the
iteration ¢, then we use a row oracle R that provides best response in form of

16



3.3. Double Oracle algorithm

pure strategy r;, to current g;:
R(qi) = i, min V(p,qi) = V(ri, )

It is important to notice that V (r;, ¢;) is also a lower bound for value of the
game Vg = max, miny, V(p,q) > V(r;,q;). The column oracle C' has to work
very similarly, it has to produce a best response ¢;, in form of a pure strategy,
to a row distribution p; on the iteration i:

C(pi) = ¢, max V(pi,q) < V(pi,ci)

Symmetrically, V(p;,¢;) is an upper bound to the value of the game Vi =
max, min, V(p, ¢) = min, max, V(p, q) < V(pi, ci).

If we have these optimal oracles, the Double Oracle algorithm will converge
to a Nash equilibrium of the game as stated in the following theorem and
proof from [1].

Theorem 3.3. The Double Oracle algorithm converges to a minimax equilib-
rium.

Minimax equilibrium means that we have set of worst-case optimal mixed
strategies forming a Nash equilibrium.

Proof. Thanks to assuming players having finite sets of strategies and there-
fore there being finite numbers of rows and columns, eventually Z and €
include all rows and columns and linear program is solving for the whole
game. To prove correctness, we have to look at iteration ¢, where we do not
add new column or row. If this happens, then necessarily the lower bound
will have the same value as the upper bound and it remains to show, that p;
is minimax solution and ¢; is maxmin solution. We will only show proof of p;
being a minimax solution, because proof of ¢; being a maxmin solution is anal-
ogous. Let v = V(p;, q;), from Vp V(p, ¢;) > v follows Vp max, V(p,q) > v.
From Vq V(pi,q) < v follows max, V(pi,q) < v. These facts combined
give us Vp, max, V(p;,q) < max, V(p,q), which shows that p; is minimax
optimal. O

B 3.3.3 Modified terminating condition

Here in this section I show analytical proof of convergence to e-Nash equilib-
rium under altered runs of the algorithm. As mentioned in Section [3.3.1| the
terminating condition can be altered to difference of the lower and the upper
bound obtained on each iteration. On iteration ¢ let u; = V(ps,¢;), l; =
V(ri,qi) be the upper and lower bound on the value of the game Vg. As
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3. Double Oracle and Single Oracle algorithms

mentioned in the same section, it is very practical to change the terminating
condition to u; — I; < €, where € is a parameter. The following theorem
states that if we terminate the algorithm with this condition, it converges to
a e-Nash equilibrium.

Theorem 3.4. Let € > 0. The pair of strategies (p;, q;) obtained by Double
Oracle algorithm forms a mixed e-Nash equilibrium.

Proof. Following the Definition [2.10| of the e-Nash equilibrium, we prove that
both p; and ¢; are e-best responses to each other.
First, we show that p; is e-best response to g;. From terminating condition,
we know that u; — I; < e. We further know, that

V(pisqi) < u
And from terminating condition we can write:
V(pi,qi) Swi <li+e

It is clear from these inequalities, that p; is a e-best response to g;.
As for g;, we can state, that:

Vi(pi,ai) 2 L
That combined with terminating condition gives us:
V(pi,qi) > 1li > ui — ¢

Again, this proves that ¢; is a e-best response to p;. O

It can be further proved, that V(p;, ¢;) is not further than e from value of
the game V.
From terminating condition, we know that u; — I; < €. Because r; is the best
response, it follows min, V(p,q;) > l; and from there max, min, V(p,q) > I;.
Combining this with terminating condition we get:

max min V(p,q) > u; — €
a p

maxmin V(p,q) + € > u;
a p

From ¢; being the best response, we obtain max, V' (p;, ¢) < u;. Two previous
statements give us:

max V(pi,q) < max min V(p,q)+e€

Strategy p; ensures that V'(p;,¢;) is not higher than e above the V4.
Due to ¢; being the best response, we get:

minmax V(p, q) < u;
pq
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3.3. Double Oracle algorithm

From r; being the best response we obtain

min V(p,q) > 1; > u; — €
p

rrgn V(p,gi) +€>u
These inequalities combined give us

n%in max V(p,q) <u; < n%in V(p,qi) + ¢

minmax V(p,q) — e < min V(p, ¢;)
P q P

Strategy ¢; ensures, that V(p;, ¢;) is not below the Viz more than e.
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3. Double Oracle and Single Oracle algorithms

B 3.3.4 Analytical convergence of Double Oracle algorithm
with suboptimal oracles

In this section I present the analytical proof of convergence for Double Oracle
algorithm with suboptimal oracles and the terminating condition described in
the previous Section Let the row oracle produce a suboptimal response
r; to g;:

min V(p, ¢;) 2 V(ri, ¢;) =0, 6 >0
And column oracle produce suboptimal response ¢; to p;:

max V(pi,q) < V(pisci) +p, p>0

Let the terminating condition of the algorithm be again u; —1; < € as described

in Section 3.3.3

Theorem 3.5. Let € >0, § > 0,p > 0 and w = max{d, p}. The set of mixed
strategies, provided by Double Oracle algorithm with the suboptimal oracles,
(pi, ¢;) forms a mixed (e + w)-Nash equilibrium.

Proof. Following the Definition of the e-Nash equilibrium, we prove that
both p; and ¢; are (e + w)-best responses to each other.

First, we show that p; is (€ + w)-best response to ¢;. From terminating
condition, we know that u; — [; < e. We further know, that

Vpi, @) <uit+p
And from terminating condition we can write:
V(pi,@i) Sui+p<li+e+p
Since w = max{d, p}, it also follows:
V(pingi) <litetw

It is clear from these inequalities, that p; is a (€ + w)-best response to g;.
As for ¢;, we can state, that:

V(pi,qi) > li —w

That combined with the terminating condition gives us:
Vpi,qi) > li —w > u — (€ +w)
This proves that ¢; is a (€ + w)-best response to p;. ]
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3.3. Double Oracle algorithm

And as in the last section, we can go further and prove that the value of
the game V(p;, ¢;) is not further than (e 4+ p + 9) from the V.
The terminating condition gives us:

Us — lz' S €
From minp V(p,q;) > I; — § it follows

max mpin Vip,q) >1; =46

max mpin Vp,q)+6>1;
And from Yq V(p;, q) < u; + p it follows
max V(pi,q) < ui +p
The terminating condition shows
ui+p<e+li+p
These two combined give us
max V(pi,q) —e—p <l

And the following inequalities occur

max V(pi,q) —e—p<1l; < max mpin Vip,q) + 46

max V(pi, ¢) < maxminV(p,q) + 0 +e+p

And therefore p; assures that V(p;, ¢;) is not higher than (e 4+ p + ) above
the Vg.
In similar fashion we derive following inequalities for ¢;

min V(p, ;) + 6 + € > ui > minmax V(p, q) - p

min V(p, ¢;) 2 minmaxV(p,q) — (p+e+9)

It follows that ¢; assures the value V' (p;, ¢;) is not lower than (e+ p+ ) below
the Vg.
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Implementation and convergence
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Chapter 4

Environment setup and implementation of
algorithms

B 2.1 Game setup

I implemented this algorithm on the game presented in . The goal is to
find the Nash equilibrium of the following game. We have two players playing
a zero-sum game. The first player is a potential thief starting from the red
state in the following map, shown in Figure [4.1, trying to get to one of the
three goals marked green. The second player is a protector of those goals
and he is trying to capture the thief on his camera. The first player, the
thief, does not know where the camera is, he only knows potential places,
where it could be and his goal is to minimize the time he is being observed by
the camera. The second player is trying to maximize the thief’s time being
observed by his camera. The following map was created to be similar with
the map in :
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4. Environment setup and implementation of algorithms

Figure 4.1: A map of the environment.

The size of the map is 100 x 100 pixels. Pixels also serve as states of
the world, where the agent can go. Obstacles or unreachable states of the
world have black color. The used environment is deterministic, which means
that the actions of the planning agent are associated with an outcome of
this action. For example, if an agent decides that he wants to go to his left,
choosing this action will result in him going left every time.

B a2 Implementation of Single Oracle algorithm

In this implementation I have used only 4 cameras, which can be seen in |[1]
and therefore there were only four columns in the game matrix M describing
this game on every iteration. Due to this fact, I didn’t have to implement the
column oracle and the computation time of the linear program in the first
step of the algorithm is greatly reduced.

The implementation was done in coding language Python. The second step
of the algorithm from Section |3.2.1| was computed by linear programming as
described in Section 2.6/ with a call to the scipy library [5]. The method used
to compute the optimum of this linear program is the Interior-point method
as outlined in [6]. My implementation also relies heavily on NumPy library -
[7] for quicker computational time and (8] for graphic visualization.

All of the possible camera locations can be seen in Figure |4.2, where blue
color means, that the camera can observe that place in the map.
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4.2. Implementation of Single Oracle algorithm

vOA

L— L—

(a) : Camera location 1 (b) : Camera location 2

~OA

==

(c) : Camera location 3 (d) : Camera location 4

Figure 4.2: Possible camera locations

It remains to present the implementation of the row oracle producing the
best possible route on the iteration ¢ given a probability distribution ¢; over
the set of these 4 possible camera locations.

B 4.2.1 Row oracle

Implementation of the row oracle has to produce the best possible response
for the current situation and for this task A* algorithm was selected. This
algorithm was presented in [|9]. A* is a route planning algorithm, which
can be used in a deterministic environment for reaching the agent’s goal.
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4. Environment setup and implementation of algorithms

Pseudocode for this algorithm is:

Algorithm 1: A* algorithm

Function Main(start, goal, h, q;):
openSet = {start}

cameFrom := an empty map

gScore := map with default value of co
gScore[start] == 0

fScore := map with default value of oo
fScore[start] == 0

while openSet is not empty do

if current = goal then
L return reconstructpath(cameFrom, current)

remove current from openSet
for each neighbor of current do

camera__cost(neighbor)
if tentativegScore < gScore[neighbor] then
cameFrom[neighbor| := current
gScore[neighbor| := tentativegScore
fScore[neighbor] := gScore[neighbor| + h(neighbor)
if neighbor not in openSet then

L add neighbor to openSet

return Failure

Function reconstructpath(cameFrom, current):
totalpath := current
while current in cameFrom.keys do
current := cameFrom[current]
L add current to totalpath

return totalpath

current = the node in openSet having the lowest fScore]] value

tentativegScore := gScore[current] 4+ d(current, neighbor) +

The A* algorithm provides the best route from a start to a goal given
that the heuristic function h is consistent. For this reason, I implemented a
heuristic, which assigns a node value of euclidian distance to the closest goal,

which is a consistent heuristic:

h(node) = miln distance(node, goal)
goals

distance(node, goal) = \/(nodex — goaly)? + (nodey, — goal,)?

Thanks to this implementation of the heuristic function, the algorithm
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4.2. Implementation of Single Oracle algorithm

always outputs the best route to one of the three goals. The function
d(current, neighbor) outputs cost of an edge from one state to its neighbor:
the cost is 1 for the 4 cardinal directions and v/2 for diagonal movement.
Let %; include k cameras on the iteration i, the function camera_ cost(node)
outputs:

k
camera__cost(neighbor) = Z qij - 0(neighbor, j) - 15
j=1

The number 15 carries meaning of a cost to the row player for stepping on
a place, that is observed by the camera. This number determinates how
much we value a longer path with less observation as compared to a shorter
path with more observation from the camera and the absolute value of this
number will not have any effect on convergence of the algorithms, so it is not
an important parameter of my implementation. Variable ¢; ; is a probability
of choosing camera j under probability distribution ¢; on iteration i of the
algorithm and §() is a function:

. . 1, if neighbor is observed by the camera j
d(neighbor, j) = ,
0, if neighbor is not observed by the camera j

The A* algorithm with presented heuristic function and costs influenced by
camera observation as defined above returns the path with minimal cost. In
usual implementation function camera__cost(node) is not present, I added it
to include camera observation into the path planning problem.

B 4.2.2 Results with optimal row oracle

If we have optimal oracles we can use the algorithm and terminating condition
described in Section [3.2.1. My implementation of this algorithm with the
previously shown row oracle reached following results. My implementation
found the optimal probability distributions over cameras from Figure [4.2:

camera location ‘ 1 ‘ 2 ‘ 3 ‘ 4
probability | 0.0 | 0.388 | 0.0 | 0.612

Table 4.1: Probability distribution over camera locations
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4. Environment setup and implementation of algorithms

In the next figure, I will show the paths that were assigned probability
bigger than zero under mixed strategy in Nash equilibrium.

(a) : Path 1 (b) : Path 2 (c) : Path 3

Figure 4.3: Paths chosen by the algorithm

The following table shows a probability distribution among these paths:

path number ‘ 1 ‘ 2 ‘ 3
probability | 0.727 | 0.159 | 0.114

Table 4.2: Probability distribution over paths

The following graph shows the convergence of the Single Oracle algorithm
with optimal row oracle used.

1000

900

800

Game value

700 A

600

500 A

0 1 2 3 4 5 6 7
Iteration

Figure 4.4: Convergence with respect to iterations
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4.2. Implementation of Single Oracle algorithm

The value of the game converges at a value of 465. Thanks to there being
only 4 possible camera locations used in this implementation, the algorithm
converges very quickly with respect to iterations and there is no need for
column oracle.

B 4.2.3 Convergence of Single Oracle algorithm with
suboptimal oracle

For obtaining a suboptimal row oracle I altered run of the Single Oracle
algorithm in the following fashion. In each iteration ¢, before letting row
oracle produce a best response to current ¢;, I generate a 100 x 100 array
with values from a uniform distribution in interval [0, ¢|, where ¢ is a constant
from range [0, 15]. This random array serves as an additional cost to each
state in the map. With cost altered as previously described, the row oracle
reacts to different information in camera observation and due to this fact does
not produce the best response available. A constant ¢ served as a parameter
of how much the oracle is altered. The bigger the ¢, the bigger the influence
of random array on a row oracle. With this randomness introduced, I had to
use proposed version of this algorithm described in Section The Figure
shows the value of the game after termination of the algorithm for every
c €[0,15], ¢ € Z. The parameter € was set to 3.

500 A

400 +

300 A

Game value

200

100 +

0 2 4 6 8 10 12 14 16
C

Figure 4.5: Game value with respect to ¢

As we can see from Figure the value of the game at the end of the
algorithm has an increasing tendency with increasing c¢. This tendency is what
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4. Environment setup and implementation of algorithms

we expected as the quality of the row oracle is decreasing with increasing c.
The reached mixed strategy profile is not a Nash equilibrium due to the fact,
that in every Nash equilibrium, the value of the game has to be the same.
In the following Figure [4.6, we can look at convergence graphs of lower and
upper bounds for ¢ = {0, 3,6,9,12,15}:

— Upper bound —— Upper bound
Lower bound 800 Lower bound
— Difference —— Difference

1000 -

600

Game value
2
8
]

Game value

200

o 1 2 3 4 5 6 o 1 2 3 4 5 6
Iteration Iteration
(@):c=0 (b): ¢c=3
1000
12001 — Upper bound —— Upper bound
Lower bound Lower bound
10004 —— Difference —— Difference

Game value
Game value

0 2 4 6 8 10 12 14 0.0 0.5 10 15 2.0 25 3.0 35 4.0
Iteration Iteration
(c):c=6 (d):c=9
1000
—— Upper bound —— Upper bound

1000 Lower bound Lower bound
—— Difference —— Difference

Game value
Game value

0 1 2 3 4 5 6 00 05 10 15 20 25 30 35 40
Iteration Iteration

(e): c=12 (f): c=15

Figure 4.6: Convergence graphs

From previous Figures [4.6/ and 4.5 we can see that there is not a noticeable
difference in iterations the algorithm requires to terminate, but the value of
the game it converges to is not the Vi computed in the previous section, and
reached mixed strategies do not form a Nash equilibrium, but they do form a
e-Nash equilibrium as proved in Section
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4.3. Implementation of Double Oracle algorithm

B a3 Implementation of Double Oracle algorithm

For implementing the column oracle I have added more options for camera
locations to the same map. The camera locations are shown in Figure 4.7
The 12 possible positions of the camera were selected to effectively cover the
map in Figure 4.1
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4. Environment setup and implementation of algorithms
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Figure 4.7: Camera locations in the map

The implementation of row oracle is the same as described in the Section
4.2.11
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4.3. Implementation of Double Oracle algorithm

B 4.3.1 Implementation of Column Oracle

The task for column oracle in each iteration is to pick the best camera location
out of those in Figure to a current strategy of the row player. Since
there are 12 camera locations to choose from, every camera locations’s result
is computed and then I choose the best one to ensure having an optimal
oracle providing the best response. Let there be k paths in %; and p; be the
computed probability distribution over them in first step of this algorithm on
the iteration i. Then the column oracle C' chooses the best camera location
by following formula:

k
C(p;) = arg max Z pijc(path;, camera)

cameras .
Jj=1

Where p; ; is probability of choosing path j under probability distribution p;
and c(path, camera) is a function returning cost of path while being observed
by input camera.

B 4.3.2 Result of Double Oracle algorithm with optimal oracles

With use of optimal oracles, described in Sections |4.3.1] and |4.2.1}, T could
use the algorithm as described in Section [3.3.1. My implementation of the
algorithm reached Nash equilibrium with following mixed strategies. The
column mixed strategy is:

camera location ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6
probability | 0.165 | 0.158 | 0.167 | 0.043 | 0.053 | 0.018
camera location | 7 | 8 | 9 | 10 | 11 |12

probability | 0.025 | 0.133 | 0.112 | 0.084 | 0.044 | 0.0

Table 4.3: Probability distribution
The following figure shows the paths with significant probability mass

assigned to them in the Nash equilibrium computed by the Double Oracle
algorithm.
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(g) : Path 7 (h) : Path 8 (i) : Path 9

(j) : Path 10

Figure 4.8: Paths found by optimal oracle
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4.3. Implementation of Double Oracle algorithm

And the following table shows probability mass assigned to each path in
Figure [4.8 in the obtained Nash equilibrium:

path number ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5
probability | 0.080 | 0.227 | 0.223 | 0.021 | 0.038
path number ‘ 6 ‘ 7 ‘ 8 ‘ 9 ‘ 10

probability | 0.051 | 0.102 | 0.043 | 0.005 | 0.205

Table 4.4: Probability distribution over paths

The algorithm converged to a Nash equilibrium and lower and upper bounds
given by responses of oracles converged as shown in the following graph.

700 4 —— Lower_bound
—— Upper bound
600 —— Abs(lower bound - upper bound)
500 4
400
300 +
200 +
100 A
0 -
—-100 4
T T T T T T T T
0 5 10 15 20 25 30 35
lteration

Figure 4.9: Convergence with respect to iterations

As seen in Figure the upper and lower bounds on V7 converged to the
value of the game or close to it in approximately 30 iterations of the algorithm
and the value of the game it converged to is approximately 247.

Bl 4.3.3 Convergence of Double Oracle algorithm with
suboptimal row oracle

Following experiment is the same experiment as in the Section with
prices randomly increased, causing the row oracle to produce a suboptimal
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4. Environment setup and implementation of algorithms

response. This experiment was done for constants ¢ € Z from interval [0, 15].
Since we are using the suboptimal oracle and we are introducing randomness
to the path planning, we have to alter the terminating condition to the one
presented and investigated in the Section [3.3.4. The following figure shows

the convergence graphs for ¢ = {0,3,6,9,12,15}.
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Figure 4.10: Convergence for
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4.3. Implementation of Double Oracle algorithm

The game values this algorithm converged to can be seen in the next bar
graph.
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Figure 4.11: Final game values with respect to ¢

And as we can see the final value of the game is increasing along with the
parameter c as expected and seen in the Section
This constant ¢ and randomness it introduces is supposed to represent a certain
unknowledge of the environment or not precisely knowing the opponent’s
current strategy. The following experiment is representing a situation, where
the agent with a optimal oracle, but an incomplete information is gaining a
full view of the game as the algorithm continues, so randomness introduced is
lowering. This is captured by the constant ¢ starting at a certain value and
decreasing with iterations.
This test was also done for constants ¢ € Z from the interval [0, 15] and the
following figure shows results.

39



4. Environment setup and implementation of algorithms

700 4

600 1

500 o

400 4

300 4

2004

100

—— Lower_bound
—— Upper bound
—— Abs(lower bound - upper bound)

0 5 10 15 20 25 30
Iteration

(@):c=1

700 4

600 4

500 4

400 4

300 4

2004

100 4

— Lower_bound
—— Upper bound
—— Abs(lower bound - upper bound)

Iteration

(c):c=6

700 4

600 4

500 o

400 4

300 4

2004

100

— Lower_bound
—— Upper bound
—— Abs(lower bound - upper bound)

0 5 10 15 20 25 30
Iteration

(e): c=12

-100

-100

—— Lower_bound
—— Upper bound
—— Abs(lower bound - upper bound)

— Lower_bound
—— Upper bound
—— Abs(lower bound - upper bound)

[ 5 10 15 20 25 30
Iteration

(d):c=9

—— Lower_bound
—— Upper bound
—— Abs(lower bound - upper bound)

0 5 10 15 20 25 30
Iteration

(f): c=15

Figure 4.12: Convergence for various constants ¢
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And final game values it converged to can be seen in the next bar graph:
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Figure 4.13: Final game values with respect to ¢

So as we can see in the Figures and in a situation, where constant
c is decreasing with each iteration by =5 it converged in approximately same
count of iteration as algorithm with optimal oracle. This experiment was
carried out to show, that even if we start with a suboptimal oracle, that is
producing better and better responses on each iteration, we still can reach
the e-Nash equilibrium this algorithm converges to with the optimal oracles.
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Chapter 5

Discussion

In this chapter, I would like to discuss a few points worth mentioning.

My first point is that my theorems and proofs for the convergence of the
investigated algorithms with suboptimal oracles were made for suboptimal
oracles, which consistently produce a response, which is worse than the best
response by a fixed value. The randomness introduced to the oracle was
causing this difference to not be consistent, although we could see that the
oracle was consistently bad enough to produce suboptimal results. For this
purpose I carried out an experiment in the Section 4.3.3, where the oracle
got better throughout the iteations and we could see, that the performance
was in most cases the same as with the optimal oracle.

I would also like to mentionion my choice of €, I kept value of this parameter
for most of my experiments at a fixed value as it does not have much effect
on the run of the algorithm provided that the parameter has a small value as
compared to the absolute values of the lower and the upper bounds.

The next point I would like to discuss is the absolute value of the penalty
for stepping on a location observed by the camera, which was set to 15.
As mentioned before in the Section [4.2.1. This value carries a meaning of
how much the thief values shorter paths with a bit more observation as
compared to a longer paths with less observation by the camera, because if
this parameter has a high value, the oracle will produce a longer paths with as
few observed locations as possible and on the contrary, if this parameter has
a low value, the oracle will produce a shorter paths with more observation by
the camera. So this value will have effect on the proportions of the produced
paths and the cost of these paths, but it certainly does not have any effect on
convergence of investigated algorithms, so it is not an important parameter
for my experiments.

I would also like to mention the fact that the values Vi was different for
Single Oracle and Double Oracle algorithms. It happened simply because
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5. Discussion

the game setup was different for each game and as we would expect, the Vg
of game played out by Single Oracle algorithm was higher than in game for
Double Oracle algorithm. I would expect this, because the camera locations
in first Single Oracle experiment cover much more ground than the camera
locations in Double Oracle experiment.

At last I would like to mention that for altering the row oracle to produce
a suboptimal response, I also tried altering the heuristic function to a non
consistent one, but results from these experiments were not clear as it was
difficult to interpret the influence of this changed heuristic to the produced
paths and their optimality.
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Chapter 6

Conclusion

The four main goals of my thesis as described in thesis specification were all
fulfilled. The main goal of the thesis was to implement the Double Oracle
algorithm and I have successfully implemented this algorithm on similar
problem as in . Furthermore, my goal was to study convergence of this
algorithm with suboptimal oracles and I have presented the theorems and
proofs in Chapter |3| describing the algorithm’s behaviour in these situations.
After presenting these theoretical results, I carried out the experiments in
Chapter 4, which correspond to these theoretical results. The experiments
confirmed, that by using the suboptimal oracles, the algorithm converges
to an e-Nash equilibrium and not the optimal Nash equilibrium. The main
contribution of my thesis is in the presented theoretical and experimental
results, which together describe, how the algorithm converges under various
circumstances and terminating conditions.
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